Geometric sequence
Practice
5 (4 votes)
Basic programming
Basics of implementation
Easy
Implementation
Problem
84% Success 2468 Attempts 30 Points 3s Time Limit 256MB Memory 1024 KB Max Code
Given a sequence \(a_1{\dots}a_n\).
You need to find a subsequence \(a_{b_1},a_{b_2},\dots,a_{b_m}(b_1< b_2<\dots<b_m)\) and an integer k which satifies \(a_{b_{i+1}}=k\cdot a_{b_i}\) for all \(1\le i<m\).
Your goal is to maximize \(m\).
Input
First line contains an integer \(n\).
Second line contains \(n\) integers, representing the sequence \(a_1{\dots}a_n\).
Output
An integer representing the maximum value of \(m\).
Constraints
\(1\le n\le 10^5\)
\(-10^5\le a_i\le 10^5\)
Submissions
Please login to view your submissions
Similar Problems
Points:30
17 votes
Tags:
EasyImplementationMathProbabilityStatistics
Points:30
60 votes
Tags:
Easy
Points:30
42 votes
Tags:
Easy
Editorial