The maximum value
Practice
4.2 (9 votes)
Basic math
Algorithms
Math
Problem
78% Success 2493 Attempts 30 Points 2s Time Limit 256MB Memory 1024 KB Max Code

For a provided integer \(k\), find the maximum value of \(m+n\), where \(1 \leqslant m,n \leqslant k\) and \((n^2 - nm - m^2)^{2} = 1\).

Note: The answer can exceed the range of a 32-bit integer.

Input format

The only line of the input contains one integer \(k\).

Output format

Print the maximum value of \(m+n\), where \(1 \leqslant m,n \leqslant k\) and \((n^2 - nm - m^2)^{2} = 1\).

Constraints

\(1 \leqslant k \leqslant 10^{18}\)

 

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:30
7 votes
Tags:
Basic MathEasy-MediumMathematicsMathematics
Points:30
1 votes
Tags:
Easy-MediumEasy
Points:30
9 votes
Tags:
Basic MathAlgorithmsMath